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IGF-1 Receptor Contributes to The Malignant Phenotype
in Human and Canine Osteosarcoma
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Abstract To further define the role of insulin-like growth factor-1 (IGF-1) and its receptor (IGF-1R) in osteosarcoma
(OS), humanOS cell lines with low (SAOS-2) and high (SAOS-LM2)metastatic potential and three canineOS-derived cell
lineswere studied. Cell lineswere evaluated for: IGF-1R expression; expression of IGF binding proteins (IGFBPs); effect of
IGF-1 on tumor cell growth, invasion, expression of urokinase plasminogen activator (uPA), and soluble uPA receptor
(suPAR), and; ectopic andorthotopic tumorigenicity of the canineOS cells in athymicmice. All cell lines exhibited steady-
state mRNA expression of IGF-1R. The SAOS-2 and SAOS-LM2 cells expressed 9,138 and 10,234 cell-associated binding
sites, respectively. Canine OS cells expressed from 1,728 to 3,883 binding sites. Two IGF-1-treated cell lines displayed
enhanced proliferation. Two cell lines formed colonies in semisolidmedia, and IGF-1 increased colony number.Matrigel
invasionwas enhanced in one cell line following IGF-1 treatment. uPA and suPARwere unchanged in SAOS-2 and SAOS-
LM2 cells following IGF-1 treatment, but the highly metastatic OS line SAOS-LM2 expressed five times more suPAR and
displayed enhanced invasion compared to the parental, lowmetastatic SAOS-2. IGFBP-5 was detected in four of five cell
lines, and IGFBP-3was detected in twocanineOScell lines. TwocanineOS lineswere tumorigenic, andonemetastasized
spontaneously. In conclusion, OS cells express IGF-1R, which can contribute to their growth and invasion. There is
suggestive evidence that increasing receptor number may contribute to in vivo tumorigenesis. Additional studies are
needed to determine how IGF-1/IGF-1R interactions contribute to the malignant phenotype of OS. J. Cell. Biochem. 92:
77–91, 2004. � 2004 Wiley-Liss, Inc.
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Osteosarcoma (OS) is a highly malignant and
metastatic cancer, usually diagnosed in chil-
dren and young adults [Cordon-Cardo, 1997].

Despite improvements in treatment, about 40%
of patients eventually succumb to metastatic
disease. A large number of growth factors, such
as platelet-derived growth factor, hepatocyte
growth factor (HGF), and insulin like growth
factor-1 (IGF-1) have been shown to influence
tumor growth and invasion, and to contribute to
the malignant phenotype for various tumors,
including OS [Radinsky, 1991; Galimi et al.,
1993; Weiner et al., 1994; Alman et al., 1995;
Rong et al., 1995; Rubin and Baserga, 1995;
Maier et al., 1996].

IGF-1 is a polypeptide that exhibits struc-
tural homology to proinsulin and exerts growth
promoting and metabolic effects. The IGFs are
the most abundant growth factors in bone and
contribute about 50% to basal bone cell prolif-
eration [Canalis et al., 1988]. Relative to other
growth factors, the IGFs are abundant in the
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circulation. Osteoblasts and OS cells in culture
have Type I IGF receptors, and can proliferate
in response to IGF-1 [Kappel et al., 1994].
Activation of IGF-1R regulates tumor growth,
both in vitro and in vivo, by at least four
mechanisms: (a) it is mitogenic; (b) it plays a
role in the establishment of the transformed
phenotype; (c) it protects cells from apoptosis,
and; (d) it promotes angiogenesis [Kaleko et al.,
1990; Harrington et al., 1994; Baserga, 1995;
Rubin and Baserga, 1995; Goad et al., 1996;
Reinmuth et al., 2002].

The IGF-1 receptor belongs to the small
family of homologous receptors that include
the insulin receptor and an orphan receptor-
related receptor [Shier and Watt, 1989]. The
receptor exists as an a2–b2 heterodimer, with
several a–a and a–b disulfide bridges. The
tyrosine kinase domains of the IGF-1 and
insulin receptor are over 80% homologous
[Baserga, 1995].

Other investigators [Sell et al., 1994; Base-
rga, 1995] have shown that IGF-1R is not
required for mouse NIH 3T3 fibroblast growth,
but is required for 3T3 oncogene transforma-
tion, an event necessary for immortalization. In
another study, a neuroblastoma cell line with
minimal expression of IGF-1R displayed mor-
phologic alterations and partial loss of contact
inhibition when transfected with IGF-1R [Sin-
gleton et al., 1996]. Furthermore, IGF-1hasalso
been shown to protect OS and other cells from
apoptosis [Sell et al., 1995; Herzlieb et al., 2000;
Schmid et al., 2001]. Overexpression of IGF-1R
in pancreatic tumor cells has been shown to
increase invasiveness and metastatic potential
[Lopez and Hanahan, 2002], and IGF-1R is
upregulated in breast cancer cells capable of
brain metastasis [Nishizuka et al., 2002].
Despite these findings, two studies have failed
to demonstrate an effect of IGF-1 or IGF-1R
expression on the clinical behavior of humanOS
[Burrow et al., 1998; Rodriguez-Galindo et al.,
2001].

Inhbition of IGF-1R expression or function in
melanoma cells results in inability to grow in
soft agar and decreased viability [Resnicoff
et al., 1994; All-Ericsson et al., 2002]. Antisense
strategies blocking IGF-1R expression induce
growth inhibition, decrease tumorigenesis, and
decrease metastasis in human and murine
carcinomas [Long et al., 1995; Chernicky et al.,
2000; Sun et al., 2001], and induce tumor
regression or apoptosis in rhabdomyosarcoma

[Shapiro et al., 1994], Ewing’s sarcoma
[Scotlandi et al., 2002], and central nervous
system tumors [Singleton et al., 1996; Liu et al.,
1998; Andrews et al., 2001]. Antibodies directed
at the IGF-1R, antisense oligonucleotides tar-
geted to IGF-1RmRNA, and strategies reducing
systemic IGF-1 levels have been reported to
inhibit proliferation and tumor xenograft
growth in OS and colon cancer [Hirschfeld and
Helman, 1994; Pinski et al., 1995, 1996; Rein-
muth et al., 2002]. Dominant negative mutants
of the IGF-1R can also reverse the transformed
phenotype or inhibit tumorigenesis or metasta-
sis [Prager et al., 1994; Dunn et al., 1998]. Thus,
IGF-1 and IGF-1R are compelling targets for
anticancer therapeutic strategies.

The activity of IGF-1 is influenced by IGF
binding proteins (IGFBPs). The IGFBPs can
have inhibitory, stimulatory, and IGF-indepen-
dent effects on cell growth [Clemmons et al.,
1993]. Seven IGFBPs have been identified
[Shimasaki and Ling, 1991; Oh et al., 1996].
IGFBP-3 is the most abundant in serum and
plays a key role in IGF-1 bioavailability.
IGFBP-3 has been shown to inhibit cell growth,
to induce apoptosis, and to mediate contact
inhibition, in an IGF-dependent or independent
fashion, depending on cell line [Cohen et al.,
1993; Oh et al., 1993; Rajah et al., 1997; Schmid
et al., 2001]. However, IGFBP-3 has also been
shown to be mitogenic for UMR-106.01 rat OS
cells in culture [Slootweg et al., 1995]. OS cells
have been shown to express IGFBP-2, IGFBP-3,
IGFBP-4, and IGFPB-5 [Cohen et al., 1993;
Lalou et al., 1994; Zumkeller et al., 1996]. Gene
expression of IGFBP-3 is influenced by TGF-B1

[Oh et al., 1995], retinoic acid [Gucev et al.,
1996; Zumkeller et al., 1996], TNF-a [Yateman
et al., 1993], and p53 [Buckbinder et al., 1995],
as well as by IGF-1 itself [Lalou et al., 1994;
Rosato et al., 2001].

The regulation of pathologic local bone
destruction by OS and the proteolytic enzymes
involved are largely unknown. OS cells can
produce various metalloproteinases as well as
urokinase type plasminogen activator (uPA)
[Fawthrop et al., 1992; Kariko et al., 1993;
Hackel et al., 1994; deBart et al., 1995], which is
upregulated by interleukin-1a [de Bart et al.,
1995], transforming growth factor-alpha, epi-
dermal growth factor (EGF) [Mars et al., 1996],
HGF [Rosen et al., 1994; Jeffers et al., 1996;
Paciucci et al., 1998], and IGF-1 [Dunn et al.,
2000]. uPA is a serine protease, andwhenbound
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to its high-affinity receptor (uPAR), is thought
to be involved in tissue remodeling and cell
migration processes [Blasi, 1993]. In addition,
uPA plays a central role in catalyzing extra-
cellular matrix-basement membrane (ECM/
BM) degradation and there is a strong associa-
tion between uPA expression and the invasive-
metastatic phenotype. Normal rat and human
osteoblasts produce low levels of uPA and
tissue-type plasminogen activator [Hoekman
et al., 1991; Fawthrop et al., 1992]. The
involvement of uPA in tumor development and
metastasis has been demonstrated both in vivo
and in vitro [Mignatti et al., 1986; deVries et al.,
1994], and uPAhas been shown to participate in
the local invasion andmetastasis of murine and
human OS [Hackel et al., 1994, 1998; Fisher
et al., 2001; Kushlinskii et al., 2001].
Canine OS is a spontaneous malignant and

highly metastatic tumor occurring most com-
monly in large breed dogs, and is a superbmodel
for human OS [Vail and MacEwen, 2000].
Despite amputation and adjuvant chemother-
apy, 75%of dogs die ofmetastasiswithin 2 years
[Dernell et al., 2001]. Using human and canine
OS cells, the objectives of this study were to: (1)
characterize OS cell lines for expression of IGF-
1R, and IGFBPs; (2) determine their response to
IGF-1 using growth and invasion assays, and;
(3) determine if IGF-1R expression correlates
with/contributes to the malignant phenotype
following in vivo transplantation in nude mice.

MATERIALS AND METHODS

Cells and Culture Conditions

D17 canine OS cells were obtained from
ATCC (CCL 183), Abrams canine OS cells were
kindly provided by Dr. W. Dernell, Colorado
StateUniversity, andGrey canineOS cellswere
established in our laboratory from a sponta-
neous lung metastasis. The human SAOS-2
cells were obtained from ATCC (HTB 85) and
the SAOS-LM2 cellswere obtained fromDr. I. J.
Fidler (MD Anderson Cancer Center, Houston,
TX). The highly metastatic SAOS-LM2 cells
were developed following serial passage in
nude mice as described [Radinsky et al., 1994].
The cell lines were passaged on plastic in mi-
nimal essential medium supplemented with
10%FBS, sodiumpyruvate, nonessential amino
acids, L-glutamine, twofold vitamin solution
(C/10, GIBCO, Grand Island, NY), and incu-
bated in 5% CO2 at 378C. All cell lines were

tested for mouse viruses (MAP test, NCI-
Frederick Cancer Research and Development
Center, Fredrick, MD) prior to in vivo trans-
plantation into mice.

mRNA Analysis

OS cells were cultured in C/10 or starved for
24 h in 0% FBS complete MEM to determine if
serum starvation would alter IGF-1R expres-
sion. Total cellular RNA was extracted from
1�107 tumor cells growing in culture using a
modified FastTrackTM mRNA isolation system
(Invitrogen, Inc., San Diego, CA). For Northern
blot analyses, poly(A)þ RNA was prepared by
oligo(dT)-cellulose chromatography, fractio-
nated on a 1% denaturing formaldehyde–
agarose gel (5 mgmRNA/lane), and electrotrans-
ferred at 0.6–0.8 A to a GeneScreen nylon
membrane with 120,000 mJ/cm2 using the
Stratalinker 1800 (Stratagene, La Jolla, CA).
Filters were washed two to three times at 558C
with30mMNaCl–3mMsodiumcitrate (pH7.2)–
0.1% NaDodSO4 (w/v) [Radinsky et al., 1995].

Hybridization Probes

The cDNA probes used were a 4.2-kilobase
BamHI–XbaI restriction endonuclease frag-
ment from the plasmid pCVN human IGF-IR
cDNA (courtesy of Dr. R. Baserga, Thomas
Jefferson University, Philadelphia, PA), and a
1.3-kilobase PstI gene fragment corresponding
to rat glyceraldehyde-3-phosphate dehydrogen-
ase (GAPDH) [Fort et al., 1985]. Each cDNA
fragment was purified by agarose gel electro-
phoresis, recovered using GeneClean (BIO 101,
Inc., LaJolla, CA), and radiolabeled by the
random primer technique using [a-32P] deoxy-
ribonucleotide triphosphates [Feinberg and
Vogelstein, 1983].

Tumor Cell Proliferation Assays

Two methods were used to assess prolifera-
tion; [3H]thymidine incorporation [Radinsky
et al., 1990] and MTT reduction [Mosmann,
1983]. All cells were plated in quadruplicate in
10% FBS-containing complete medium at 5 or
10� 103 cells/well into 96-well plates. The cells
were allowed to adhere for 18 h, then the
medium was removed, cells were washed 2�
withHank’s balanced salt solution (HBSS), and
medium was replaced with 0, 1, or 10% FBS-
containing medium. Recombinant human (rh)
IGF-1 (R & D Systems, Inc., Minneapolis, MN)
was added at 0, 10, or 100 ng/ml, and cells were
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incubated (378C, 5% CO2) for 72 h. To assess
DNA synthesis, 0.5 mCi/ml [3H]thymidine (spe-
cific activity 10–20 Ci/mMol, Amersham Corp.,
Arlington Heights, IL) was added for an addi-
tional 24 h before harvesting. The medium was
aspirated, adherent cells rinsed 2�with HBSS,
and the cells were solubilized with 50 ml of 1%
SDS in 0.1 M NaOH for 1 h. Lysates were
collected using a cell harvester system and
counted on a beta counter. Percent stimulation
was calculated by the formula [B�A]/A�100,
where A is the counts per minute (cpm) for
control cells andB is the cpmof the treated cells.

To assess relative viable cell number we used
a tetrazolium-based colorimetric assay that
measures the reduction of MTT (Sigma Chemi-
cal Co., St. Louis, MO) by live cells to violet-
colored formazan crystals as described
[Mosmann, 1983]. Briefly, plates were set up
as above and incubated for 72 h. Following
incubation, 50 ml ofMTT (2mg/ml) was added to
each well and the plates were incubated for 4 h.
Wells were then washed with HBSS and 100 ml
of DMSOwas added to eachwell to lyse the cells
and dissolve the formazan crystals. Optical
density (OD) for each well was determined on
a micro-ELISA plate reader at 560 nm. OD
correlates to the number of live cells per well.

Anchorage Independent Growth

Colony formation in agarose was determined
as described [Li et al., 1989]. Briefly, tumor cells
were plated in 6-well tissue culture plates at
5� 103 cells/well and incubated in semi-solid
agarose (0.3%) with 10% FBS in the presence
or absence of rhIGF-1 (0, 10, or 100 ng/ml)
overlying a base layer of 0.6% agarose. Cells
were allowed to incubate for 3–6 weeks and the
number and size of colonies were quantitated.
All experiments were performed in duplicate.

Matrigel Invasion Assay

Each lot of Matrigel invasion chambers
(Becton Dickinson Labware, Bedford, MA) was
evaluated and standardized for invasiveness
using a human fibrosarcoma cell line HT 1080
obtained from ATCC (CCL 121) as a positive
control and NIH 3T3 fibroblasts (ATCC) as a
negative control. The Matrigel invasion cham-
ber consists of an 8.0 mm pore size filter (1�
105 pores/cm2, 0.31 cm2) coated with a consis-
tently uniform layer of Matrigel, containing
laminin, collagen type IV, heparan sulfate
proteoglycan, entactin, and other components

in a 24-well format. Serum-free medium (0.1%
BSA) with 0 (control) or 50 ng/ml of rhIGF-1
was then added to the lower chamber and
1� 105 cells in serum-free medium added to
the upper chamber. The chambers were incu-
bated for 24 h at 378C in 5% CO2. The non-
invading cells in the upper chamber were then
wiped completely clean with a cotton swab, the
filterswere stainedwithDiff-QuickTM, and cells
were counted.

Urokinase Plasminogen Activator (uPA) and
Soluble uPA Receptor (suPAR) Expression

Tumor cells (2.5� 105 perwell) were plated in
a 6-well plate in complete MEM in 10% FBS.
Cellswereallowed to adhere overnight, then the
medium was removed and the cells washed 2�
with HBSS. The medium was replaced with
complete MEM in 0% FBS with 0 (control) or
50ng/ml IGF-1. Supernatantwas collectedafter
48 h and analyzed for uPA and suPAR concen-
tration usingELISAkits #894 and #893, respec-
tively (American Diagnostics, Greenwich, CT)
according to manufacturer directions. Both kits
are based on a double-antibody sandwich tech-
nique in which two different monoclonal anti-
bodies are used to capture and detect human
uPA and suPAR.

Ligand-Binding Assay for IGF-1
Cell Surface Receptors

OS cells were plated in 24-well plates at
2� 105 cells/well in 10% FBS in MEM. Forty-
eight hours later, the cells were washed with
warm (378C) HBSS and 125I-IGF-1 (Amersham,
Inc., Arlington Heights, IL) at 125,000 cpm in
binding buffer (20 mM HEPES in serum-free
MEM, 0.1% purified BSA) was added to each
well, followed by addition of the indicated
concentrations of rhIGF-1 (0–200 molar excess
IGF-1) to a final volume of 2 ml. After a 4-h
incubation at 48C, the cells were washed twice
with cold HBSS, solubilized with 200 ml Triton-
X100, and collected in12� 75mmtubes.Assays
were performed at least twice and cell asso-
ciated radioactivity was measured in a gamma
counter.

Scatchard analysis was performed as
described using increasing concentrations of
IGF-1 (unlabeled) up to 400molar excess with a
known amount of 125I-IGF-1 to cause maximal
binding [Radinsky et al., 1995]. Data were
analyzed using Prism software (GraphPad,
SanDiego, CA).
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Western Ligand Blot for IGFBPs

For collection of conditioned medium (CM),
5� 105 cells/well were plated in 6-well plates
overnight. The cells were then washed 2� with
HBSS, suspended in serum-free medium, and
incubated in 378C for 48 h. The CM was
collected, centrifuged after the addition of
protease inhibitors (2 mM EDTA, 1 mM PMSF,
20 mM leupeptin, 0.15 U/ml aprotinin), and
concentrated with Centricon-10 concentrators
(Amicon, Beverly, MA). Concentrated proteins
were separated by 12% SDS–PAGE under non-
reducing conditions, and transferred to nitro-
cellulose. For ligand blotting, membranes were
incubated overnight at 48Cwith 1.5� 105 cpmof
125I-IGF-1 or blocked with unlabelled rhIGF-1
in TBS buffer containing 0.1% Tween-20, and
autoradiography was performed according to
the method of Hossenlopp [Hossenlopp et al.,
1986].

Xenograft Experiments

Male athymic nude mice (NCI-nu/nu) were
obtained from the animal production area of the
National Cancer Institute-Frederick Cancer
Research and Development Center. The mice
were housed and maintained in laminar flow
cabinets under specific pathogen-free condi-
tions in facilities approved by the American
Association for Accreditation of Laboratory
Animal Care and in accordance with current
regulations and standards of the United States
Department of Agriculture, United States
Department of Health and Human Services,
and National Institutes of Health. The mice
were used according to institutional guidelines
when they were 8–10 weeks old.
Canine OS cells in log phase were harvested

by trypsinization, washed in HBSS, and resus-
pended in serum-free culture medium at a
concentration of 2� 106 cells/100 ml. Mice were
injected with 2� 106 cells subcutaneously or
1� 106 cells (100 ml) intravenously (three mice
per group). Ina separate experiment, threemice
were injected with 2� 106 canine Abrams cells
into the medullary cavity of the distal femur
using a 26 g needle. All animals were observed
on a daily basis and once tumors were palpable,
tumorsweremeasuredweekly. Themice receiv-
ing subcutaneous injections were euthanized
when the subcutaneous tumor diameter
reached 1 cm. The mice injected into the
orthotopic site (distal femur) had the affected

leg amputated by coxofemoral disarticulation
while the mice were under general anesthesia
using methoxyflurane. Mice were then exam-
ined frequently and euthanized when mori-
bund. A complete necropsy was performed and
the lungs were visually and microscopically
evaluated.

Data Analysis

Student’s unpaired two-tailed t-test was used
to determine differences between means. Dif-
ferences were considered significant when
P< 0.05.

RESULTS

Northern Analysis for IGF-1R mRNA

Northern blot analyses using RNA from three
canine and two human OS cell lines in log
growth phase demonstrated steady-state
expression of IGF-1R in all cell lines (Fig. 1).
For SAOS-2 and SAOS-LM2, a 0.7-kilobase
cDNA fragment of human IGF-1R hybridized
with 11.0 and 7.0-kilobase mRNA transcripts.
For the canine OS cells, the same probe for
human IGF-1R hybridized with the 11.0-kilo-
base fragment and a <7.0-kilobase fragment.
Serum starvation for 24 h did not alter mRNA
expression (Fig. 1).

IGF-1 is Mitogenic to Osteosarcoma Cells

Wenext determined if IGF-1wasmitogenic to
human and canine OS cells grown under
anchorage-dependent conditions in low versus
high serum concentrations. All five cell lines
were grown in serum concentrations of 0, 1, and
10% FBS in the absence or presence of rhIGF-1
(0, 10, and 100 ng/ml). Mitogenic activity in
response to IGF-1 was detected only in low
serum concentrations (0 and 1%). This was
confirmed using both [3H]thymidine to detect
DNA incorporation, and the MTT assay to
determine relative viable cell number (Fig. 2).
As shown in Figure 2A, [3H]thymidine incor-
poration increased 100–125% in SAOS-2 and
175–300% in SAOS-LM2. Canine OS cells
exhibited no significant increase in prolifera-
tion in response to rhIGF-1.

Relative viable cell number, as measured by
the MTT assay, correlated with the [3H]thymi-
dine assay results. Both SAOS-2 and SAOS-
LM2 proliferated in response to rhIGF-1 in low
serum concentrations (Fig. 2B).
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When the OS cells were grown in 0.3%
agarose (anchorage-independent growth condi-
tions), only D17 and Abrams cells formed
colonies, and IGF-1 treatment increased colony
number compared to untreated controls
(Fig. 2C). IGF-1 resulted in a 20–40% increase
in colony number for D17 and a 140% increase
for Abrams. No colony formation was observed
in SAOS-2, SAOS-LM2, or gray OS cells.

Matrigel Invasion Assay

To examine whether IGF-1 could influence
the invasive phenotype in the OS cells, we
performed in vitro assays assessing ability to
invade and migrate through a basement mem-
brane (Matrigel)-coated filter in response to
rhIGF-1. Cells were incubated for 24 h in the
presence or absence of IGF-1 in the bottom
chamber. Of the five OS cell lines tested, only
the canine grey cells showed an increase in
Matrigel invasion following treatment with
IGF-1. The SAOS-LM2 cells showed greater
invasion compared to the parental SAOS-2
under basal and IGF-1 supplemented condi-

tions (P¼ 0.01), correlating with their meta-
static phenotype (Fig. 3).

uPA and suPAR Expression

No detectable uPA or suPAR was identifiable
in conditioned medium (CM) from the canine
cell lines using thehumanELISAkits. The level
of uPA (<0.1 ng/ml) was similar in human
SAOS-2 and SAOS-LM2 lines. uPA activity was
marginally lower in CM from SAOS cells
cultured with IGF-1 (P¼ 0.07). No difference
in uPA production was noted in the SAOS-LM2
cells as a result of IGF-1 treatment (Fig. 4A).
IGF-1 did not alter suPAR concentration in the
CM, however, the concentration of suPAR was
fivefold greater in the SAOS-LM2 compared to
the parental SAOS-2 (Fig. 4B).

Ligand-Binding Assay for IGF-1
Cell Surface Receptors

The relative binding for 125I-IGF-1 for all cell
lines is shown in Figure 5. Table I summarizes
the Scatchard analysis data. For the three
canine OS cell lines, IGF-1 binding sites ranged

Fig. 1. Steady-state mRNA expression of IGF-1R in OS cell lines. Polyadenylated mRNA from OS cells
grown in 10 or 0% FBS, was used in all cases. The hybridization probe used was a 0.7-kilobase cDNA
fragment of human IGF-1R, which hybridizes with 11.0 and 7.0-kilobase mRNA transcripts in human cells.
As a control, a 1.3-kilobase fragment of human GAPDH was also employed, in which a 1.3-kilobase
transcript is expected (38).
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from 1,728 to 3,883 per cell. The IGF-1R
numbers for SAOS-2 and SAOS-LM2 OS cells
were 9,138 and 10,234 per cell, respectively. A
representative saturation binding curve and

Scatchard plot for SAOS-2 is presented in
Figure 6.

Western Ligand Blot for IGFBPs

IGFBPs were detected in all cell lines. Faint
bands for IGFBP-5 (28 kDa) were detected in
the human SAOS-2 and SAOS-LM2 and canine
D17. The Abrams canine OS line showed bands
for IGFBP-5 (28 kDa) and IGFBP-3 (46 kDa). A
strong band for IGFBP-3 (46 kDa) was detected
in gray OS cells (Fig. 7).

Xenograft Experiments

The tumorigenicity and metastatic potential
of SAOS-2 and SAOS-LM2 in nude mice have
been reported previously [Radinsky et al.,
1994]. SAOS-2 is tumorigenic but poorly meta-
static in nude mice, and SAOS-LM2 forms lung
metastases when injected intravenously. As
summarized in Table II, D17 and Abrams were
tumorigenic following subcutaneous injection.
Tumorswere detected by 4weeks andmeasured
5–10 mm by 6 weeks. All mice were necropsied
when the tumors reached >15 mm in diameter
and no metastases were noted. When tumor
cells were injected intravenously, metastasis
was detected in mice injected with the human
SAOS-LM2 and the canine Abrams OS cells
(Table II).

To further study the metastatic potential of
the Abrams cells, these cells were injected
orthotopically (distal femur), and the leg was
amputated at the coxofemoral joint when the
tumor mass measured 10 mm in diameter

Fig. 2. Growth response to IGF-1. OS cells were plated in 10%
FBS MEM for 24 h, washed, and cells were then cultured in 0%
FBS MEM with IGF-1 added at 0 (control, open bar), 10 (striped
bar), or 100 (solid bar) ng/ml. Results shown in A and B are the
percent change observed when cells were exposed to IGF-1
compared to control. Asterisk denotes P< 0.05 compared to
control. Data are presented from those cell lines that showed a
difference compared to control. A: 72 h [3H]thymidine
incorporation assay. B: 72 h MTT assay. C: Agarose assay: cells
were plated in 0.3% solid agarose in 10% FBS MEM with 0
(control), 10, or 100ng/ml IGF-1 andcolonies countedatweek5.

Fig. 3. Matrigel invasion assay.OS cellswere plated inMatrigel
invasion chambers, with IGF-1 used as a chemoattractant. The
SAOS-LM2 cells displayed significantly greater invasion com-
pared to the parental SAOS-2 cells (a, P<0.01). Of the five OS
cell lines treated, only grey showed significantly increased
invasion in response to IGF-1 (b, P< 0.05).
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(approximately 4–5 weeks). Mice were eutha-
nized and necropsied 6 weeks later, and gross
and microscopic lung metastasis were detect-
ed in two of three mice evaluated (Fig. 8).
Karyotypic analysis confirmed that the lung
metastaseswere of canine origin (datanot shown).

DISCUSSION

We sought to characterize the expression and
functionality of IGF-1R in selected human and
canine OS cell lines to determine whether
IGF and/or IGF-1R expression correlated with

phenotypic changes associated with malig-
nancy and metastasis.

Based on the Northern analyses and con-
firmed by the radioligand studies, IGF-1R is
expressed by human SAOS-2, SAOS-LM2, and
the three canine OS cell lines studied. Scatch-
ard analysis was linear in two canine OS cell
lines (Abrams andD17) and both humanOS cell
lines (SAOS-2 and SAOS-LM2). However, it
showed a complex pattern in Grey OS. Gener-
ally, non-linearity inScatchardanalysis implies
ligand binding to more than one type of binding
site. The IGF-1R expression levels we describe

Fig. 4. uPA and suPAR expression in SAOS-2 and SAOS-LM2 cells. OS cells were cultured for 48 h in
serum-free MEM� 100 ng/ml rhIGF-1 and supernatants were collected and assayed for uPA (A) and suPAR
(B). A: IGF-1 marginally (P¼0.07) reduced uPA levels in SAOS-2 cells. B: No effect of IGF-1 was detected,
however, SAOS-LM2 produced five times more suPAR than SAOS-2 (*P< 0.05).
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in the human and canine cells compare favor-
ably with the numbers of IGF-1R (based on
Scatchard analysis) reported for various human
cell lines, which range from 1,200 to 15,200 per
cell [Remacle-Bonnet et al., 1992; Nagamani
and Stuart, 1996; Velez-Yanguas et al., 1996;
vandenBerg et al., 1996]. TheScatchard results
obtained in this study must be interpreted
taking into account the potential contribution
of the IGFBPs,whichmay significantly alter the
binding of IGF-1 to its receptor. Recently, a
study reported that SAOS-2 cells expressed
55,000 IGF-1R per cell. However, these inves-
tigators used 125I-des(1-3)IGF-1 to determine
the receptor content [Ohlsson et al., 1998]. This
ligand exclusively binds to the IGF-1R and does
not bind to IGFBPs. This may account for the
discrepancy between their results and the IGF-
1R number reported in our study.

Although IGF-1 has been shown to be mito-
genic for human OS cells [Pollak et al., 1990;
Kappel et al., 1994] and our data support this
work,we are the first to demonstrate that IGF-1
is mitogenic for canine OS-derived cells. Both
Abrams and D17 showed an increase in colony
formation in response to rhIGF-1 when grown
in agarose. Growth of cells in agarose is usually
associated with a more aggressive and

Fig. 5. Relative 125I-IGF-1 binding. 2� 105 cells were plated in
triplicate wells and grown in 10% FBS MEM, washed, and 125I-
IGF-1 was added to each well and allowed to incubate for 4 h.
Cells were then washed, lysed, and counted in a beta counter.
125I-IGF-1 bindingwas blocked using excess IGF-1 for all cells or
anti-IGF-1R (aIR3) for human cells only. Data is presented as
cpm/106 cells.

TABLE I. Scatchard Analysis

Cell line
B-Max
pM/L

KD
pM/L

IGF-1
receptor #

SAOS-2 2.581 0.9187 9,138
SAOS-LM2 3.145 0.7596 10,234
Abrams 1.936 11.560 3,883
D17 1.617 6.1310 2,949
Grey 1.119 1.998 1,728

Fig. 6. Saturation binding curve and Scatchard analysis. Representative saturation curve showing
specific binding of 125I-IGF-1 to SAOS-2 cells measured in the presence of various concentrations of
unlabeled IGF-1. Inset: Scatchard representation of the data for the 125I-IGF-1 binding displacement by
unlabeled IGF-1 analyzed by the GraphPad Prism software program. The solid line represents a computer-
generated best fit for a one-site binding model. The abscissa shows pM of bound 125I-IGF-1; the ordinate
indicates the ratio of bound IGF-1 to free IGF-1.
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metastatic phenotype. Previous studies have
shown a correlation between anchorage-inde-
pendent growth capacity and metastatic beha-
vior for murine fibrosarcoma and human
melanoma, breast cancer, and colon carcinoma
cells [Price, 1986; Li et al., 1989]. It is note-
worthy that only the colony-forming lines
Abrams and D17 were tumorigenic following
transplantation in nude mice, and that these
were the canine lines with the highest IGF-1R
number.

uPA is a serine protease that regulates multi-
ple pathways involved in matrix degradation,
cell motility, and angiogenesis [Blasi, 1993;
Hudson and McReynolds, 1997]. uPAR is
anchored to the cell membrane by a glycosylpho-
sphatylinositol moiety and uPAR is hypothe-
sized to focus and prolong the activity of uPA
[Blasi, 1993; Nykjaer et al., 1994]. Many tumors
have been shown to express uPAR and suPAR,
i.e., uPAR protein without the gylcolipid anchor,
and the expression has been associated with cell
migration and tumor invasion [Kariko et al.,
1993;Bianchi et al., 1994;Pykeetal., 1994;Stahl
and Mueller, 1994; Hudson and McReynolds,
1997]. Cell lines lacking uPAR do not invade
Matrigel [Hudson and McReynolds, 1997].
Studies of clinical material have shown that
elevated plasma levels of suPAR are asso-
ciated with reduced survival in non-small cell
lung cancer [Pappot et al., 1997], metastatic
breast cancer [Stephens et al., 1997], and color-
ectal cancer. Growth factors such as EGF and
HGF have been shown to enhance matrix
metalloproteinase (92 kid gelatinase/type IV

TABLE II. Tumorigenicity of Osteosarcoma
Cell Lines

Cell line Source

In nude mice

Tumorigenic Metastatic

SAOS-2 Human Yes No
SAOS-LM2 Human Yes Yes
D17 Dog (ATCC) Yes No
Abrams Dog (primary) Yes Yes
Grey Dog (lung met) No No

Fig. 7. Western ligand blot for IGFBPs. IGFBPs were detected
byaffinity cross-linkingwith 125I-IGF-1.OScellswere cultured in
serum-free medium for 48 h, and the conditioned media was
concentrated by ultrafiltration and analyzed by Western ligand
blotting. IGFBP-5 (28 kDa) was detected in human SAOS-2,
SAOS-LM2, and canine D17 (faint bands) and Abrams (strong
band). Canine OS cells (Abrams and Grey) showed strong bands
for IGFBP-3 (46 kDa).

Fig. 8. Photomicrograph of lung metastasis (hematoxylin and eosin, 40�). Three nudemice were injected
with Abrams canine OS cells into the distal femur and tumors developed within 5 weeks. The rear leg was
amputated and themice sacrificed and necropsied 6weeks later. Lungmetastaseswere detected grossly and
histologically in two of three mice.
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collagenase) [Price et al., 1996; Zeigler et al.,
1996; Kondapaka et al., 1997] and uPA activity,
and thus increase invasiveness [Jeffers et al.,
1996; Long and Rose, 1996; Mars et al., 1996].
Antisense strategies reducinguPA expression in
OS cells result in reduced Matrigel invasion
[Haeckel et al., 1998]. In this study, IGF-1
marginally lowered the level of uPA in the
SAOS-2 cells, indicating that IGF-1 can influ-
ence the production of uPA in OS cells. These
findingsare inagreementwithapublishedstudy
using MG-63 OS cells, indicating that uPA
production was reduced following treatment
with rhIGF-1 [Lalou et al., 1994].
We found in this study that only one OS cell

line tested showed enhanced Matrigel invasion
following treatmentwith IGF-1. Several studies
have addressed the effect of IGF-1 on tumor cell
invasion [Dunn et al., 1998, 2000; Long et al.,
1998a; Mira et al., 1999]. One recently pub-
lished study using PA-III prostate carcinoma
cells reported that reduction of IGF-1R expres-
sion, using anantisenseapproach, reducedbone
invasion in an in vivo model [Burfeind et al.,
1996]. In another study, overexpression of IGF-
1R in lung carcinoma cells enhanced invasion
into Matrigel [Long et al., 1998b]. Enhanced
expression of uPA and/or the matrix metallo-
proteases by IGF-1 may be responsible for its
pro-invasive effects [Long et al., 1998a; Mira
et al., 1999; Dunn et al., 2000].
The IGFBPs have been postulated to play

important roles in controlling theactivity of IGF
[Ritvos et al., 1988; Ernst and Rodan, 1990;
LaTour et al., 1990; Culouscou and Shoyab,
1991; Andress and Birnbaum, 1992; Lee et al.,
1993; Slootweg et al., 1995; Zumkeller et al.,
1996]. The IGFBPs may either inhibit or
potentiate IGF action, and some IGFBPs may
have direct independent inhibitory effects on
cells [Culouscou and Shoyab, 1991; Rajah et al.,
1997]. IGF-1 and IGFBPs are major regulators
of osteoblast physiology. IGF-1 and IGF-II are
involved in osteoblast mitogenesis and stimu-
lating bone matrix protein synthesis, and
IGFBPs can regulate the bioavailability of
IGFs. In plasma, IGFBP-3 is the major IGFBP
and has a dual inhibitory mechanism of action,
either through IGF-1 dependent effects or
directly [Moerman et al., 1993; Velez-Yanguas
et al., 1996]. IGFBP-3 gene expression has been
shown to be regulated by p53 signaling [Buck-
binder et al., 1995]. IGFBP-3 may sequester
IGF-1 and prevent receptor binding and more

recently, was shown to induce apoptosis and
may contribute to senescent growth [Moerman
et al., 1993; Rajah et al., 1997]. In this study,
Western radioligand binding demonstrated the
expression of IGFBP-3 and -5 in OS cells.
IGFBP-3 and IGFBP-5 have been shown to
stimulate mitogenesis for osteoblasts or rat OS
cells without exogenous IGF-1 [Andress and
Birnbaum, 1992; Slootweg et al., 1995]. SAOS-2
cells have been shown by others to express
IGFBP-5 [Schmid et al., 1995].

One important and significant finding from
this study was the demonstration of sponta-
neous lung metastasis of canine Abrams OS
cells following orthotopic transplantation.
Another interesting observation was the corre-
lation of IGF-1R protein expression to growth
and metastasis in the nude mice. A similar
observation can be made with the human
SAOS cells. The metastatic SAOS-LM2 shows
higher IGF-1R expression (based on Scatchard
analysis) than the non-metastatic SAOS-2. The
canine OS cells displaying an aggressive in vivo
phenotype, as evidenced by local tumor growth
andmetastasis, also showed thehighest IGF-1R
density based on Scatchard analysis (Table I).
These results are supportive of our hypothesis
relating IGF-1R expression to the malignant
phenotype. The association between IGF-1R
expression and malignant phenotype needs
further study.

Collectively, our results show that human
and canine OS cells express IGF-1R based on
Northern analyses and radioligand binding.
Although not consistent in all OS cells tested,
IGF-1 enhanced cell proliferation and colony
formation in soft agar. Invasion throughMatri-
gel wasminimally increased following exposure
to IGF-1. Furthermore, we have identified a
canineOS cell linewhich,when injected into the
orthotopic site (distal femur), metastasizes
spontaneously following amputation. This
canine OS cell line had the highest expression
of IGF-1R of the canine cells tested based on
Scatchard analysis.

In conclusion, this study provides additional
evidence for the significant role of IGF-1 and
IGF-1R on OS cell growth and invasion.
Furthermore, the identification of IGF-1R and
response to IGF in canine OS cells derived from
spontaneous tumors supports the use of spon-
taneous canine OS as a model to further
investigate the importance of the IGF-1 system
in OS development and metastasis.
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